Cutting through the Robotic Clutter at ProMat2019

Cutting through the Robotic Clutter at ProMat2019

Cutting through the Robotic Clutter at ProMat2019

A Guide to Separating the Signal from the Noise in Material Handling Automation.

The eCommerce revolution is forcing its way into everyone’s distribution and fulfillment business. As a result:

Labor is becoming harder to find, more expensive and difficult to retain.

If this situation has you looking for piece picking automation solutions during your trip to ProMat this year, don’t be overwhelmed by all the shiny robotic objects on display at the McCormick Center.

We have categorized picking automation offerings into six “evaluation buckets” that make it easier to focus your energy.

Each bucket has unique attributes and automated workflows, but the newest category in the list, Independent AMR, is a next-generation technology that provides the best standard of comparison with regard to:

  • Labor cost efficiency
  • Cost of deployment and infrastructure
  • Throughput improvement and ROI
  • Flexibility and scalability, both up and down
  • Worker productivity and optimal working conditions

Here is a roundup of all six categories of automated piece picking solutions:

Manual Piece Picking

The what: The simplest automation alternative is no automation!  Simply having workers travel the warehouse and pick the product is a valid solution.

The good: There is no technology investment cost.

The bad: By definition this category is a labor-intensive way to address the use case.

Pro guidance: This is not a viable, long term strategy if your goal is to have greater labor efficiency over time and/or address the current labor pressures. Next.

Augmented Pick technology

The what: Simple technologies like put-walls, voice pick, RF pick and other add-ons can supplement the manual picking process that give some increased efficiency but don’t fundamentally change the pick process.

The good: These methods augment and automate parts of it for added efficiency at low to medium cost.

The bad: They provide only a medium bump in throughput.

Pro guidance: It’s not enough, folks.

Fixed Automation

The what: Automation that is physically built into the facility, like conveyors, shuttle systems and ASRS.

The good: A good fit for stable, high-volume use cases with little variability.

The bad: High initial cost and effort of deployment. Invasive installation into the physical environment. With that upfront cost there is also an ongoing maintenance cost and the requirement to hold extra inventory.  Most problematic for dynamic businesses will be a lack of flexibility.  Businesses with seasonal volume or mix changes and dynamic business conditions will require more flexible solutions.

Pro guidance: For appropriate use cases fixed automation achieves very high throughput and increases labor efficiency significantly, but is only appropriate for high-volume, stable, long-term investments.

Mobile Goods to Picker
The what: Warehouse shelves or goods are retrieved by the automation and presented to workers at a pick station, “Amazon-Robotics-style.”

The good: Achieves high throughput and high labor efficiency for big businesses that can afford a hefty investment in both funds and time.

The bad: Requires a build out with changes to the physical infrastructure and a potentially long and large deployment investment to get up and running.  With these solutions there is also a requirement to hold more inventory to support the workflow.  These are non-collaborative, meaning workers and automation cannot co-work in the same space.

Pro guidance: Must be designed to handle peak fulfillment but can be flexed by adding robots, stations and personnel. Again, these systems are only a good fit for high-volume, very stable fulfillment requirements where very little flexibility is ever anticipated.

Follow-me, Lead-me, and Wait-for-me pick assist AMRs
The what: Collaborative autonomous mobile robots or mobile carts.

The good: Newer robotic solutions are typically lower cost and do not require a physical build out. They assist the pickers and are highly flexible to business cycles and volume changes.  Workers and robots coexist in the same physical space and pickers can operate ‘hands free’.

The bad: The follow-me, lead-me, wait-wait-for-me dependence create a ceiling for the throughput and efficiency attainable and limits workflow flexibility – the workflow is constrained by the speed of the workers.

Pro guidance: These solutions are a good first step in robotic automation but have a built-in ceiling on the labor efficiencies they can achieve because they are constrained by the speed of the worker.

Independent AMRs
The what: Next generation technology. Robots work collaboratively but independently from workers in the warehouse.

The good: Robots run collaboratively in the same space as the workers—but workers are not forced to interact with the robots at all.  Removing this constraint enables a much higher throughput.

The bad: A picking application is required and the workers are not entirely hands free.

The better: Independent AMRs tick every box in the robotics advantages checklist. Inexpensive. Extremely flexible and scalable. Worker friendly. Optimal throughput.

Pro guidance: Years of materials handling automation has been building to this approach, where workers and robots each operate at their maximum efficiency, with zero interference.

In conclusion…

We hope this guide helps you to narrow your search so you can focus in on the best technology solution for your fulfillment operations—and your business bottom line.